Towards Robust Few-shot Point Cloud Semantic Segmentation

Yating Xu (National University of Singapore),* Na Zhao (SUTD), Gim Hee Lee (National University of Singapore)
The 34th British Machine Vision Conference


Few-shot point cloud semantic segmentation aims to train a model to quickly adapt to new unseen classes with only a handful of support set samples. However, the noise-free assumption in the support set can be easily violated in many practical real-world settings. In this paper, we focus on improving the robustness of few-shot point cloud segmentation under the detrimental influence of noisy support sets during testing time. To this end, we first propose a Component-level Clean Noise Separation (CCNS) representation learning to learn discriminative feature representations that separates the clean samples of the target classes from the noisy samples. Leveraging the well-separated clean and noisy support samples from our CCNS, we further propose a Multi-scale Degree-based Noise Suppression (MDNS) scheme to remove the noisy shots from the support set. We conduct extensive experiments on various noise settings on two benchmark datasets. Our results show that the combination of CCNS and MDNS significantly improves the performance. Our code is available at



author    = {Yating Xu and Na Zhao and Gim Hee Lee},
title     = {Towards Robust Few-shot Point Cloud Semantic Segmentation},
booktitle = {34th British Machine Vision Conference 2023, {BMVC} 2023, Aberdeen, UK, November 20-24, 2023},
publisher = {BMVA},
year      = {2023},
url       = {}

Copyright © 2023 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection