Region-aware Knowledge Distillation for Efficient Image-to-Image Translation

Linfeng Zhang (Tsinghua University ),* Xin Chen (Intel Corp.), Runpei Dong (Xi'an Jiaotong University), Kaisheng Ma (Tsinghua University )
The 34th British Machine Vision Conference


Recent progress in image-to-image translation has witnessed the success of generative adversarial networks (GANs). However, GANs usually contain a huge number of parameters, which lead to intolerant memory and computation consumption and limit their deployment on edge devices. To address this issue, knowledge distillation is proposed to transfer the knowledge from a cumbersome teacher model to an efficient student model. However, most previous knowledge distillation methods are designed for image classification and lead to limited performance in image-to-image translation. In this paper, we propose Region-aware Knowledge Distillation (ReKo) to compress image-to-image translation models. Firstly, ReKo adaptively finds the crucial regions in the images with an attention module. Then, patch-wise contrastive learning is adopted to maximize the mutual information between students and teachers in these crucial regions. Experiments with nine comparison methods on nine datasets demonstrate the substantial effectiveness of ReKo on both paired and unpaired image-to-image translation. For instance, our 7.08X compressed and 6.80X accelerated CycleGAN student outperforms its teacher by 1.33 and 1.04 FID scores on Horse->Zebra and Zebra->Horse, respectively. Codes have been released in the supplementary material.



author    = {Linfeng Zhang and Xin Chen and Runpei Dong and Kaisheng Ma},
title     = {Region-aware Knowledge Distillation for  Efficient Image-to-Image Translation},
booktitle = {34th British Machine Vision Conference 2023, {BMVC} 2023, Aberdeen, UK, November 20-24, 2023},
publisher = {BMVA},
year      = {2023},
url       = {}

Copyright © 2023 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection