Dual-Query Multiple Instance Learning for Dynamic Meta-Embedding based Tumor Classification


Simon Holdenried-Krafft (University of Tübingen),* Peter Somers (University of Tübingen), Ivonne Montes-Mojarro (University Hospital of Tübingen), Diana Silimon (University Hospital of Tübingen), Cristina Tarín (University of Stuttgart), Falko Fend (University Hospital of Tübingen), Hendrik P. A. Lensch (University of Tübingen)
The 34th British Machine Vision Conference

Abstract

Whole slide image (WSI) assessment is a challenging and crucial step in cancer diagnosis and treatment planning. WSIs require high magnifications to facilitate sub-cellular analysis. Precise annotations for patch- or even pixel-level classifications in the context of gigapixel WSIs are tedious to acquire and require domain experts. Coarse-grained labels, on the other hand, are easily accessible, which makes WSI classification an ideal use case for multiple instance learning (MIL). In our work, we propose a novel embedding-based Dual-Query MIL pipeline (DQ-MIL). We contribute to both the embedding and aggregation steps. Since all-purpose visual feature representations are not yet available, embedding models are currently limited in terms of generalizability. With our work, we explore the potential of dynamic meta-embedding based on cutting-edge self-supervised pre-trained models in the context of MIL. Moreover, we propose a new MIL architecture capable of combining MIL-attention with correlated self-attention. The Dual-Query Perceiver design of our approach allows us to leverage the concept of self-distillation and to combine the advantages of a small model in the context of a low data regime with the rich feature representation of a larger model. We demonstrate the superior performance of our approach on three histopathological datasets, where we show improvement of up to 10% over state-of-the-art approaches.

Video



Citation

@inproceedings{Holdenried-Krafft_2023_BMVC,
author    = {Simon Holdenried-Krafft and Peter Somers and Ivonne Montes-Mojarro and Diana Silimon and Cristina Tarín and Falko Fend and Hendrik P. A. Lensch},
title     = {Dual-Query Multiple Instance Learning for Dynamic Meta-Embedding based Tumor Classification},
booktitle = {34th British Machine Vision Conference 2023, {BMVC} 2023, Aberdeen, UK, November 20-24, 2023},
publisher = {BMVA},
year      = {2023},
url       = {https://papers.bmvc2023.org/0575.pdf}
}


Copyright © 2023 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection